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Overview

• Coherent Elastic Neutrino-Nucleus Scattering 

• Phonon detectors 

• Ricochet at a Reactor 

• Ricochet using electron capture source 

• Conclusion
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Coherent Elastic ν-Nucleus Scattering

• σ: Cross Section 

• T: Recoil Energy 

• Eν: Neutrino 
Energy 

• GF: Fermi Constant 

• QW: Weak Charge 

• MA: Atomic Mass 

• F: Form Factor

No flavor-specific terms!!! 
Same rate for νe, νμ, and ντ
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Low-energy recoils produce different products...

Phonons 
10 meV/ph

100% energy

Ionization 
~ 10 eV/e

20% energy

Scintillation  
~ 1 keV/γ

few % energy
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Charge Sensors
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Phonon Sensors0V

+3V

prompt phonons

CDMS II Detectors
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0V

+3V

prompt phonons

Luke phonons

Luke Energy  
= ΔV [e Neh]

Ptot  =  Erecoil + ELuke

Phonon Sensors

CDMS II Detectors

Charge Sensors

Luke phonons are used to read charge in special CDMSlite mode
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“interwoven” 
phonon and charge on 

each side!

charge

sensor

(biased)

phonon

sensor

(grounded)

SuperCDMS Soudan: iZIPs!
8 phonon channels + 
4 charge sensors = 
Lots of information per event!
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TES
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Getting Energy to the Sensors

Athermal phonon

Cooper pairs

Quasiparticles transport 
energy to the TES

Trapping region

Hot TES
electrons

Interaction site
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CDMS Detector Monte Carlo (DMC)

• We developed a Matlab-
based Detector Monte 
Carlo (DMC) which 
incorporates the physics of 
phonon transport, electron 
and hole transport, and 
TES energy collection and 
response. 

• The output can be piped 
to our standard processing 
software and compared 
side-to-side with real data. 

• The SLAC group has 
transported the DMC to 
GEANT4 and incorporated 
it into our SuperCDMS 
GEANT simulation
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Advanced Test Reactor (ATR), Idaho Nat. Lab.

• 110 MW Thermal 
Reactor 

• 2x1019 ν/s 

• 1.2x1012 ν/cm2/s 
@ 11 meters from 
core 

• 6-8 weeks on, 1-2 
weeks off 
operating cycle
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ATR experimental site

• Potential Sites: 

•  In first basement 
(outer shim corridor), 
7 m from the core 

• In second basement, 
11 m from the core

11 m

12 m
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CEνNS Signal
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Ricochet Phase 1: SuperCDMS Tower at a Reactor 
• Leverage R&D and Engineering being done by the 

SuperCDMS G2 Experiment. 

• 1 Tower holds 6 detectors, 100 eVnr Threshold 

• 4 Si Detectors = 2.4kg Si = 11 CEνNS events per day 

• 2 Ge Detectors = 2.8kg Ge = 26 CEνNS events per 
day 

• >7000/1000/400 events per month at the SONGS, 
ATR, and MIT reactors 

• >20 events per month at the SNS (for comparison)
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Backgrounds

• Cosmogenic backgrounds 

• Radiogenic backgrounds 

• “Reactogenic” backgrounds

We have a good handle on the signal, but what about the 
backgrounds?  

We have been working on this at MIT, but today we are only 
showing a work in progress.. 

We assume no electron/nuclear recoil discrimination, thus our 
backgrounds are composed of γ, β, n, and α coming from:

We are measuring the gamma and neutron backgrounds 
directly...
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Ricochet Monte Carlo in GEANT4

reactor core

concrete walls

detector and 
shielding

reactor core

concrete walls

detector and 
shielding
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Ricochet Monte Carlo in GEANT4

concrete 
walls

muon veto

poly shielding

Pb shielding

cryostat

detectors
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Cosmogenic Backgrounds
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Putting together what we have so far...
• Created simulated signal and 

background spectra for MITR and 
ATR sites. 

• What is in: 
• CEνNS signal 
• Cosmogenics: full CRY 

simulation with latitude, 
altitude, and seasonal 
corrections 

• U, Th, and K in Poly and Pb 
• L-shell electron capture lines 

from cosmogenic activation of 
Ge due to the isotopes: 68Ge, 
60Co, 65Zn, 58Co, 57Co, 
56Co, 54Mn, 55Fe 

• What is not in: 
• Residual U, Th contamination 

of copper housing 
• Cosmogenic or “Reactogenic” 

activation in shields and 
housing  

• Radon daughters (surf. evnts) 
• Neutron Background from 

reactor 
• Unknowns (atomic transitions, 

etc..) 
• This is a work in progress!!!
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MIT Simulated Spectrum 
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Conclusions

• A SuperCDMS Tower deployed at a reactor would see 
thousands of CEνNS events. 

• The technology development, engineering design, readout, 
and operating procedures are all being done and paid for by 
the SuperCDMS SNOLAB Project.   

• Background simulations and measurements need to be 
improved to understand the requirements of the shield around 
the detectors, including the need for active veto detectors. 

• We are currently measuring the neutron background spectrum 
at MITR with two NCD detectors from SNO moderated by 
various layers of PVC. 

• Ricochet could be deployed at a reactor in the next few years.

Ricochet
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Backup Slides
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Neutrons at MITR

• The room at MITR was designed for 
Boron Neutron Capture Therapy, a 
type of cancer therapy using 
epithermal neutrons.  

• The room has a neutron beamline to 
deliver the neutrons from the reactor to 
the patient and moderate them into 
epithermal neutrons. 

• When not in use, the beamline has a 
neutron “shutter” made of aluminum, 
PTFE, lead, water, and boronated 
concrete. 

• A thesis with a detailed MCNP 
simulation of the reactor, the shutter, 
and the actual room exists.
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Need to measure neutron flux over 7 orders of magnitude with high precision

Total integrated flux = 0.34 s-1.cm-2
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Neutron monitoring 
Use of He3 Neutron Capture Detector (NCD) based on the following process:

 - Cylinder shape: 200 cm long, 5.08 cm diameter => active volume ~ 4000 cm3  
 - Gaseous TPC: 85% 3He + 15% CF4 @ 2.53 bar 
 - Charge readout: charge preamplifier Canberra 2001A  
 - Optimal HV: 1.95 kV 
 - Energy resolution @ 764 keV: 3.3%

Geometrical effect 
p or t hit the wall

Neutron capture 
Sensitive to p and t track orientation

DATA
Selection window 

Count the number of events

DATA



Enectali Figueroa-Feliciano  /  WINP 2015 / BNL

Neutron monitoring 
A bonner sphere approach

NCD are mostly sensitive to thermal neutrons (cross section ~ 10^4 barns)  

Use layers of PVC to slow down neutrons due to multiple collisions with hydrogen (mostly) 

With PVC thicknesses up to 10 cm, we are sensitive to MeV neutrons!

MC
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Neutron monitoring 
Recovering the neutron flux from NCD rate measurements 

Likelihood approach

Definition of the likelihood function:

Expected neutron flux reconstruction 
sensitivity using maximum likelihood 
distribution 

This example considers: 
- MITR theoretical neutron flux 
- 10 neutron energy bins 
- 11 PVC layers 
- An acquisition time of 20 minutes per 
layer

Reconstructed total flux = 0.348 ± 0.021 neutron /s/cm2 (~5% uncertainty)

MC

Validation of the method using a monoenergetic deuteron neutron source is ongoing...
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Radiogenic Backgrounds

Poly shield Pb shield Cu housing Detectors

• U, Th, K • U, Th, K
• U, Th, K 
• Cosmic activation 
• Radon Daughters

• U, Th, K 
• Cosmic activation: L-, 
M-shell EC lines in Ge 
•Radon Daughters
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Contamination Assumptions

238U [mBq / kg] 232Th [mBq / kg]

Outer Pb 3.8 9.4

Inner Pb 1 1

Outer poly 0.8 1.2

Inner poly 0.8 1.2
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U, Th Spectra
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U, Th Spectra
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U, Th Spectra
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Sterile Neutrino Search at the ATR?

Run period 1 year at each baseline

Baselines 4,6 m for MITR, 7,10 m for ATR

Target Ge

Core size 0.38x0.61 m for MITR, 1.2x1.2 m for ATR

Flux

238
U only, from Mueller

Neutrino rate 3.2E25 ⌫/year for MITR, 6.4E26 ⌫/year for ATR
Active volume 10 kg

Detection e�ciency 60%

Background (flat spectrum) 4.4 cts/kg/day in 6 kg fiducial

Energy threshold 100 eVr

Flat syst. unc. (mostly flux norm.) 2%

Correlation coe�cient between baselines 0.99

Energy smear near threshold 20%

If we mount the experiment on rails, can we search for 
sterile neutrinos at the ATR? 

Oscillation length for 3 MeV neutrinos is around 3 m.
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Sterile Neutrino Search

Pre
lim

ina
ry
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Ricochet Phase 2 
(MeV-scale Neutrinos)
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The Detector
• Given historical precedent, we focus on 

Transition Edge Sensors (TES) as the 
technology to push down to the 10 eV 
scale. 

• Energy resolution dominated by the total 
heat capacitance of system (Ctot). 

• At 15 mK, a 10 eV threshold could be 
achieved with a system capacitance of 
Ctot < 300 pJ/K. 

• Model must include noise sources from 
other internal decouplings.
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Detector Optimization

• System’s mass 
optimized to reach 10 
eV threshold assuming 
15 mK temperature. 

• Yields 50 g Si (20 g Ge) 
cube. 

• Signal pulses show 
remarkable linearity.
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Backgrounds and Systematics

• Backgrounds stem from various 
sources: 

• Radiogenic impurities (U, Th, 60Co, 
and 3H).  Most have signatures well 
above region of interest.  Some, like 
3H, have betas that have phase space 
in ROI. 

• Compton and photo-absorption. 

• Surface photons from atomic 
transitions. 

• Neutrons (< 0.1 eV/kg/yr in 10-100 
keV, from CDMS measurements) 

• Neutrino-elastic scattering (not in 
energy range)

Estimates from CDMS place 
background at 40 events/kg/day/

keV in the 1-10 keV region. 
Leads to 1-2 events/kg/day in 

ROI
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Sensitivity Studies

• Wanted to determine what the 
potential sensitivity of such an 
experiment for a sterile neutrino at 
the 1 eV mass splitting scale. 

• Array of 10,000 elements with Ar/
Cr source just outside shield (10 
cm closest distance). 

• Measuring time of 300 days (for Ar, 
equivalent of 50 days signal, 250 
days background). 

• Background rate of 1 event/kg/day
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Results

• Sensitivity study 
performed on 
10,000 element 
array (500 kg Si, 
200 kg Ge),  Ar or 
Cr source 

• Assumed 300 day 
measuring time with 
background rate of           
1 event/kg/day. 

• Analysis on shape + 
rate (bulk result from 
shape) 

• Mock signal also 
tested.
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Results

• Sensitivity study 
performed on 
10,000 element 
array (500 kg Si, 
200 kg Ge), Ar or Cr 
source. 

• Assumed 300 day 
measuring time with 
background rate of           
1 event/kg/day. 

• Analysis on shape + 
rate (bulk result from 
shape) 

• Mock signal also 
tested.
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